A First Look at PTR-MS and AMS Observations from the Aldine Site of the Houston Triangle

X.-Y. Yu,^a J. Zheng,^c M. L. Alexander,^b J. Ortega,^b R. Zhang,^c and C. M. Berkowitz^a

- ^{a.} Atmospheric Science & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354
- b. William R. Wiley Environmental Molecular Sciences Laboratory, Richland, WA 99354
- ^{c.} Department of Atmospheric Sciences, Texas A & M University, College Station, TX 77843-3150

Overview of the Houston Triangle

•PTR-MS 9/13/06 - 9/28/06

•AMS 9/15/06 -9/28/06

Research Objectives

- Conversion and interaction between VOCs and SOAs
- Better understanding of SOA formation
- VOCs and aerosol characterization
- VOCs and aerosol emission sources

Previous Findings in Aldine

- What did we know? Why did we choose Aldine?
 - EPA Houston Supersite research highlights led by Dave Allen & Matt Fraser
 - Overview of major findings in the Houston Supersite, in press, Allen & Fraser, J. Air & Waste Management Association, 2006
 - Size distribution of organic functional groups in ambient aerosols, La Porte HRM-3 -Aldine, Russell & Allen, AST, 2004
 - Polar organic compounds in fine PM, La Porte HRM-3 Aldine, Fraser, Atm. Environ., 2004
 - Predicting SOA formation due to rxns of aromatics and monoterpenes, Allen, JGR, 2005
 - Seasonal and spatial OCEC in Houston, Russell & Allen, Atm. Environ, 2004
 - Fine particulate matter Supersites program, Solomon & Allen, AST, 2004
 - · Plus many other papers
 - Aerosol hygroscopicity by Don Collins' group in Aldine in 2002, Atm. Enviorn.,2004, only aerosol size and hydroscopicity were measured
 - Most recent pub SOA contribution on aerosol formation, Fan et al., GRL, 2006
- Why is data set unique?
 - * Make simultaneous PTR-MS and AMS measurements
 - * Learn more about gas-to-particle conversion and interaction.

Field Site & Instrumentation at Aldine

Trailer seen from the TCEQ monitoring station at Aldine

Texas A & M University PTR-MS

- PTR-MS (Texas A&M) 20+ species, 2 min resolution
- AMS (PNNL/EMSL) Org, SO₄, NO₃, CI, NH₄, 5 min data

PNNL/EMSL c-ToF AMS

Preliminary AMS time series

Corrections/calibrations (CE, IE, and size) are not yet incorporated, the mass loading concentrations here are only plotted here to show trend

Identified sampling periods of interest

Based on high mixing ratios of hydrocarbons and aromatic compounds from PTR-MS, periods of interests may include:

- 9/13/06 9/15/069/16/06
- 9/18/06
- 9/25/06

- 9/20/06 9/21/06
- 9/26/06 9/28/06
- Based on high aerosol mass loading from AMS
 - 9/15/06
 - 9/17/06 9/18/06
 - 9/24/06 9/25/06
- 9/16/06
- late 9/19/06 early 9/21/06
- 9/26/06 9/28/06

Identify Interesting Periods/Episodes

- Based on met data and preliminary back trajectory
 analysis
 - * Southerly, northerly, southeasterly, northeasterly are the predominant wind directions
 - High mixing ratios of trace gases and VOCs were observed under northerly or northeasterly wind flows; (where are the sources?) and southeasterly (influence from ship channel)
- Based on preliminary TCEQ trace gas measurements including O₃, NO/NO₂/NOx, NOy etc. lead to the same interesting sampling periods
- Based on PTR-MS and AMS measurements
- Based on from comparison between PTR-MS and AMS

Future Plan

- Data analyses
 - * AMS and PTR-MS QA/QC
 - Finalize size resolved AMS speciation and full spectrum of PTR-MS
 - Prepare manuscript addressing the science questions and summarizing key observations
 - AMS
 - PTR-MS
 - TDMA
 - O₃, CO, NO/NO₂/NOx, and NOy etc.
 - * In-depth analysis of selected periods
 - Comparison with other observations
 - Modeling
- Implications
 - * SOA and VOC
 - Useful data set for process modeling

Considering high mixing ratios of hydrocarbons and aromatic compounds, periods of interests may include:

• 9/13/06 - 9/15/06 9/16/06 9/18/06 9/20/06 - 9/21/06 9/25/06 9/26/06 - 9/28/06

PTR-MS and AMS Comparison

PTR-MS and AMS Comparison

Trace gas time series

Considering high mixing ratios of trace gases, periods of interests may include: 9/13/06 - 9/15/06; 9/16/06; 9/18/06; 9/20/06 - 9/21/06; 9/25/06; 9/26/06 - 9/28/06

Back up preliminary met data

Gas-to-particle and particle-to-gas conversion schematic plot VOCs and SOAs, what can we learn from Aldine

Acknowledgement

Funding

- * DOE, ASP
- * PNNL, EMSL
- * HARC, TX

People

- * PNNL: Victor Morris, Mathew Newburn, Nels Laulainen, Ruth Keefe, and Beverly Johnson
- * HARC: Alex Cuclius
- * TCEQ: Vince Torres, Jim Neece, Jim Thomas, Raj Nadkarni and many others